您好、欢迎来到现金彩票网!
当前位置:彩之网 > 转换框架 >

资源 小米开源移动端深度学习框架MACE:可转换TensorFlow模型

发布时间:2019-06-12 09:10 来源:未知 编辑:admin

  原标题:资源 小米开源移动端深度学习框架MACE:可转换TensorFlow模型

  6 月 28 日,小米首席架构师,人工智能与云平台副总裁崔宝秋在 2018(第十三届)开源中国开源世界高峰论坛上宣布,正式开源小米移动端深度学习框架 MACE。该框架采用与 Caffe2 类似的描述文件定义模型,因此它能非常便捷地部署移动端应用。

  Mobile AI Compute Engine (MACE) 是一个专为移动端异构计算平台优化的神经网络计算框架。目前该框架为 TensorFlow 和 Caffe 模型提供转换工具,并且其它框架定义的模型很快也能得到支持。下图展示了该计算框架的整体结构:

  据 Github 项目介绍,小米的 MACE 主要从以下的角度做了专门的优化:

  MACE 定义的定制化模型格式与 Caffe2 的类似,MACE 模型能由 TensorFlow 和 Caffe 输出的模型转化。YAML 文件详细描述了模型部署细节,后文将展示该文件的示例。

  MACE 模型格式包含两部分:定义模型的计算图和模型参数张量。计算图部分利用 Protocol Buffers 做序列化,而所有的模型参数张量级联在一起成为一个连续字节数组,我们称这个数组为张量数据。在模型图中,张量数据的偏移(offsets)和长度都会被记录下来。

  部署模型到移动端的第一步就是创建 YAML 文件,该 YAML 文件描述了模型部署的情况,每一个文件都将生成一个静态库(如果指定了多个 ABIs,那么每个都会有一个静态库)。部署文件可以包含一个或多个模型,例如智能相机应用可能包含人脸识别、目标识别和语音识别模型,它们可以在一个部署文件中定义。

  MACE Model Zoo 包含若干常用模型,不仅包括 MobileNet、SqueezeNet、ResNet-50 和 Inception-v3 等常见的卷积神经网络,同时还有风格迁移等应用。MACE Model Zoo 会对一组手机进行每日构建,最新的性能评测结果可以从项目的持续集成页面获取。

http://rf1995.com/zhuanhuankuangjia/34.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有